Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hapipah M. Ali, Subramaniam Puvaneswary, Wan Jefri Basirun and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.041$
$w R$ factor $=0.127$
Data-to-parameter ratio $=12.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Hydroxysalicylaldehyde 2-furoylhydrazone

The molecule of the title compound, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$, is planar and two molecules are stacked over one another at a distance of $3.6 \AA$. The molecules are linked by hydrogen bonds into a three-dimensional network.

Comment

Among the salicylaldehyde-benzoylhydrazone class of Schiff bases, some require intermolecular hydrogen bonds to stabilize a planar conformation (Huo et al., 2004). A previous study by our group described the non-planar structure of 3-hydroxysalicylaldehyde benzoylhydrazone (Ali et al., 2005).

(I)

In the title compound, (I) (Fig. 1), the 3-hydroxy substituent forms an intermolecular hydrogen bond to the carbonyl O atom of an adjacent molecule. In addition, this unit is also an acceptor of the amino H atom. The planar molecules are stacked over one another (Fig. 2), and the molecules are linked by hydrogen bonds (Table 2) into a three-dimensional network. The O atom of the furyl ring does not participate in any hydrogen bonding. Salicylaldehyde 2-furoylhydrazone has been reported but its structure has not yet been determined (Garg et al., 2000).

Experimental

3-Hydroxysalicyldehyde ($0.28 \mathrm{~g}, 2 \mathrm{mmol}$) and 2-furoylhydrazide $(0.25 \mathrm{~g}, 2 \mathrm{mmol})$ were heated in ethanol $(40 \mathrm{ml})$ for 2 h . Compound (I) separated from the solution as yellow plates.

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

Received 11 March 2005 Accepted 16 March 2005 Online 25 March 2005

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=246.22$
Monoclinic, $P 2_{1} / n$
$a=11.2143(8) \AA$
$b=9.3730(7) \AA$
$c=11.4149(9) \AA$
$\beta=109.120(1))^{\circ}$
$V=1133.7(2) \AA^{3}$
$Z=4$
$D_{x}=1.443 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=246.22$
Monoclinic, $P 2_{1 / n} / n$
$a=11.2143$ (8) A
$b=9.3730$ (7) A
$\beta=109.120$ (1)
$V=1133.7$ (2) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 2381
reflections
$\theta=2.2-27.0^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Plate, yellow
$0.42 \times 0.32 \times 0.14 \mathrm{~mm}$

Data collection

Bruker SMART area-detector diffractometer
φ and ω scans
Absorption correction: none 6280 measured reflections 2461 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.127$
$S=1.03$
2461 reflections
203 parameters
All H -atom parameters refined

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 2$	$1.368(2)$	$\mathrm{O} 4-\mathrm{C} 12$	$1.348(3)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.359(2)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.371(2)$
$\mathrm{O} 3-\mathrm{C} 8$	$1.233(2)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.280(2)$
$\mathrm{O} 4-\mathrm{C} 9$	$1.358(2)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.344(2)$
$\mathrm{C} 9-\mathrm{O} 4-\mathrm{C} 12$	$106.3(2)$	$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 9$	$121.8(2)$
N2-N1-C7	$118.3(1)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$	$115.3(1)$
N1-N2-C8	$117.5(1)$	$\mathrm{O} 4-\mathrm{C} 9-\mathrm{C} 8$	$114.5(1)$
N1-C7-C6	$119.7(2)$	$\mathrm{O} 4-\mathrm{C} 9-\mathrm{C} 10$	$109.5(2)$
$\mathrm{O} 3-\mathrm{C} 8-\mathrm{N} 2$	$122.8(2)$		
C1-C6-C7-N1	$1.3(3)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{O} 3$	$-1.3(2)$
C7-N1-N2-C8	$178.6(2)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$	$177.8(1)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$	$179.8(2)$	$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 4$	$5.3(2)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 o \cdots \mathrm{O} 3^{\text {i }}$	0.86 (1)	1.82 (1)	2.662 (2)	169 (2)
$\mathrm{O} 2-\mathrm{H} 2 o \cdots \mathrm{~N} 1$	0.86 (1)	1.85 (2)	2.611 (2)	147 (2)
$\mathrm{N} 2-\mathrm{H} 2 n \cdots \mathrm{O} 1^{\text {ii }}$	0.85 (1)	2.18 (2)	2.890 (2)	141 (2)

Figure 2
A plot illustrating the $\pi-\pi$ stacking of molecules of (I). The C, N and O atoms shown without principal axes are related to those shown with principal axes by $(1-x, 2-y, 1-z)$.

The carbon-bound H atoms were refined with a distance restraint of 0.95 (1) \AA, and the nitrogen- and oxygen-bound H atoms with a distance restraint of 0.85 (1) \AA.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Ministry of Science, Technology and the Environment for supporting this study (grant No. IPRA 33-02-03-3055). We acknowledge Mr Xiao-Long Feng of Sun Yat-Sen University for the diffraction measurements.

References

Ali, H. M., Puvaneswary, S., Basirun, W. F. \& Ng, S. W. (2005). Acta Cryst. E61, o1013-o1014.
Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Garg, B. S., Singh, P. K. \& Sharma, J. L. (2000). Synth. React. Inorg. Met. Org. Chem. 30, 803-813.
Huo, L.-H., Shan, G., Zhao, H., Zhao, J.-G., Zain, S. M. \& Ng, S. W. (2004). Acta Cryst. E60, o1538-o1540.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

