Received 11 March 2005

Accepted 16 March 2005

Online 25 March 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hapipah M. Ali, Subramaniam Puvaneswary, Wan Jefri Basirun and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.041 wR factor = 0.127 Data-to-parameter ratio = 12.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The molecule of the title compound, $C_{12}H_{10}N_2O_4$, is planar and two molecules are stacked over one another at a distance of 3.6 Å. The molecules are linked by hydrogen bonds into a three-dimensional network.

3-Hydroxysalicylaldehyde 2-furoylhydrazone

Comment

Among the salicylaldehyde–benzoylhydrazone class of Schiff bases, some require intermolecular hydrogen bonds to stabilize a planar conformation (Huo *et al.*, 2004). A previous study by our group described the non-planar structure of 3-hydroxysalicylaldehyde benzoylhydrazone (Ali *et al.*, 2005).

In the title compound, (I) (Fig. 1), the 3-hydroxy substituent forms an intermolecular hydrogen bond to the carbonyl O atom of an adjacent molecule. In addition, this unit is also an acceptor of the amino H atom. The planar molecules are stacked over one another (Fig. 2), and the molecules are linked by hydrogen bonds (Table 2) into a three-dimensional network. The O atom of the furyl ring does not participate in any hydrogen bonding. Salicylaldehyde 2-furoylhydrazone has been reported but its structure has not yet been determined (Garg *et al.*, 2000).

Experimental

3-Hydroxysalicyldehyde (0.28 g, 2 mmol) and 2-furoylhydrazide (0.25 g, 2 mmol) were heated in ethanol (40 ml) for 2 h. Compound (I) separated from the solution as yellow plates.

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Crystal data

 $C_{12}H_{10}N_2O_4$ $M_r = 246.22$ Monoclinic, $P2_1/n$ a = 11.2143 (8) Å b = 9.3730 (7) Å c = 11.4149 (9) Å $\beta = 109.120$ (1)° V = 1133.7 (2) Å³ Z = 4

Data collection

Bruker SMART area-detector diffractometer φ and ω scans Absorption correction: none 6280 measured reflections 2461 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0624P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.041$	+ 0.2675P]
$wR(F^2) = 0.127$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
2461 reflections	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
203 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
All H-atom parameters refined	

 $D_x = 1.443 \text{ Mg m}^{-3}$

Cell parameters from 2381

 $0.42 \times 0.32 \times 0.14 \text{ mm}$

1703 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

 $\theta = 2.2-27.0^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

T = 295 (2) K

Plate, yellow

 $R_{\rm int} = 0.020$

 $\theta_{\rm max} = 27.0^{\circ}$ $h = -13 \rightarrow 14$

 $k = -11 \rightarrow 11$

 $l = -9 \rightarrow 14$

Table 1

Selected geometric parameters (Å, °).

O1-C2	1.368 (2)	O4-C12	1.348 (3)
O2-C1	1.359 (2)	N1-N2	1.371 (2)
O3-C8	1.233 (2)	N1-C7	1.280 (2)
O4-C9	1.358 (2)	N2-C8	1.344 (2)
C9-O4-C12	106.3 (2)	03-08-09	121.8 (2)
N2-N1-C7	118.3 (1)	N2-C8-C9	115.3 (1)
N1-N2-C8	117.5 (1)	O4-C9-C8	114.5 (1)
N1-C7-C6	119.7 (2)	O4-C9-C10	109.5 (2)
O3-C8-N2	122.8 (2)		
C1-C6-C7-N1	1.3 (3)	N1-N2-C8-O3	-1.3(2)
C7-N1-N2-C8	178.6 (2)	N1-N2-C8-C9	177.8 (1)
C6-C7-N1-N2	179.8 (2)	O3-C8-C9-O4	5.3 (2)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1-H1o···O3 ⁱ	0.86(1)	1.82 (1)	2.662 (2)	169 (2)
O2−H2o···N1	0.86(1)	1.85 (2)	2.611 (2)	147 (2)
$N2-H2n\cdots O1^{ii}$	0.85 (1)	2.18 (2)	2.890 (2)	141 (2)
	1 1	1 1	3 1	

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.

Figure 2

A plot illustrating the π - π stacking of molecules of (I). The C, N and O atoms shown without principal axes are related to those shown with principal axes by (1 - x, 2 - y, 1 - z).

The carbon-bound H atoms were refined with a distance restraint of 0.95 (1) Å, and the nitrogen- and oxygen-bound H atoms with a distance restraint of 0.85 (1) Å.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank the Ministry of Science, Technology and the Environment for supporting this study (grant No. IPRA 33–02-03–3055). We acknowledge Mr Xiao-Long Feng of Sun Yat-Sen University for the diffraction measurements.

References

- Ali, H. M., Puvaneswary, S., Basirun, W. F. & Ng, S. W. (2005). Acta Cryst. E61, o1013–o1014.
- Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Garg, B. S., Singh, P. K. & Sharma, J. L. (2000). Synth. React. Inorg. Met. Org. Chem. 30, 803–813.

Huo, L.-H., Shan, G., Zhao, H., Zhao, J.-G., Zain, S. M. & Ng, S. W. (2004). Acta Cryst. E60, 01538–01540.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.